Search results for "Spodoptera frugiperda"

showing 3 items of 3 documents

The sf32 unique gene of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) is a non-essential gene that could be involved in nucleocapsid o…

2013

A recombinant virus lacking the sf32 gene (Sf32null), unique to the Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV), was generated by homologous recombination from a bacmid comprising the complete viral genome (Sfbac). Transcriptional analysis revealed that sf32 is an early gene. Occlusion bodies (OBs) of Sf32null contained 62% more genomic DNA than viruses containing the sf32 gene, Sfbac and Sf32null-repair, although Sf32null DNA was three-fold less infective when injected in vivo. Sf32null OBs were 18% larger in diameter and contained 17% more nucleocapsids within ODVs than those of Sfbac. No significant differences were detected in OB pathogenicity (50% lethal concentration)…

GenotypevirusesScienceGenome ViralSpodopteraSpodopteraVirus ReplicationOcclusion-derived virionsRecombinant virusHomology (biology)VirusViral Proteins03 medical and health sciencesAnimalsNucleocapsidSpodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV)Gene030304 developmental biology0303 health sciencesGenes Essential[SDV.BA.MVSA]Life Sciences [q-bio]/Animal biology/Veterinary medicine and animal HealthMultidisciplinaryNucleocapsid organizationbiology030306 microbiologyfungiQVirionRbiology.organism_classificationVirologyNucleopolyhedroviruses3. Good healthViral replicationEssential geneLarvaDNA Viral[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/VirologyMedicinesf32Homologous recombinationResearch ArticlePLoS ONE
researchProduct

Proteolytic processing of Bacillus thuringiensis Vip3A proteins by two Spodoptera species

2014

Abstract Vip3 proteins have been described to be secreted by Bacillus thuringiensis during the vegetative growth phase and to display a broad insecticidal spectrum against lepidopteran larvae. Vip3Aa protoxin has been reported to be significantly more toxic to Spodoptera frugiperda than to Spodoptera exigua and differences in the midgut processing have been proposed to be responsible. In contrast, we have found that Vip3Ae is essentially equally toxic against these two species. Proteolysis experiments were performed to study the stability of Vip3A proteins to peptidase digestion and to see whether the differences found could explain differences in toxicity against these two Spodoptera speci…

InsecticidesPhysiologyProteolysisBacterial ProteinSpodopteraSpodopteraMicrobiologyVegetative insecticidal proteinBacterial ProteinsSpecies SpecificitySpodoptera exiguaBacillus thuringiensisExiguamedicineAnimalsPest Control BiologicalMidgut peptidaseInsecticideChymotrypsinbiologymedicine.diagnostic_testAnimalMedicine (all)Serine EndopeptidasesfungiSpodoptera frugiperdaMidgutbiology.organism_classificationTrypsinSerine EndopeptidaseSerine peptidaseBiochemistryMode of actionLarvaInsect Sciencebiology.proteinDigestionDigestive Systemmedicine.drugJournal of Insect Physiology
researchProduct

Gut Microbiota Dysbiosis Influences Metabolic Homeostasis in Spodoptera frugiperda

2021

Insect gut microbiota plays important roles in acquiring nutrition, preventing pathogens infection, modulating immune responses, and communicating with environment. Gut microbiota can be affected by external factors such as foods and antibiotics. Spodoptera frugiperda (Lepidoptera: Noctuidae) is an important destructive pest of grain crops worldwide. The function of gut microbiota in S. frugiperda remains to be investigated. In this study, we fed S. frugiperda larvae with artificial diet with antibiotic mixture (penicillin, gentamicin, rifampicin, and streptomycin) to perturb gut microbiota, and then examined the effect of gut microbiota dysbiosis on S. frugiperda gene expression by RNA seq…

Microbiology (medical)autophagyFirmicutesmedicine.drug_classvirusesAntibioticsGut floradigestive systemMicrobiologyantibioticsMicrobiologyActinobacteriaTranscriptomeparasitic diseasesmedicineKEGGOriginal Researchbiologygut microbiotafungiBacteroidetesSpodoptera frugiperdabiology.organism_classificationmedicine.diseaseQR1-502Dysbiosismetabolic homeostasisenergyFrontiers in Microbiology
researchProduct